Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

NNadir

(33,512 posts)
Sun Sep 19, 2021, 02:34 PM Sep 2021

MIT's TEPCO Professor of Nuclear Science and Engineering

My son, a Materials Science Engineer, has expressed a strong interest, after finishing a two semester Masters under a scholarship award, in pursuing his Ph.D. in nuclear engineering.

As he is very busy in the lab, his course work, and the need to write a thesis on his metallurgical work, I have offered, and he has honored me by accepting, my help in reviewing the faculties of the remaining American Nuclear Engineering Schools to give advice and a survey of my thinking of what faculty members are doing to help save the world. This consists simply of a spreadsheet with the institution, the web address of the faculty members, and a brief discussion, one to ten sentences, in what the faculty laboratory is engaged, and my personal views on the technical details of a putative sustainable nuclear future to provide the energy necessary to clean up the mess we've made of the entire planet.

The idea is to give a quick survey into which he can drill for greater depth as he considers his personal future and target schools.

So I came across this guy, who on the surface level seems like he'd be an excellent advisor from whom one could learn an enormous amount of important information: Jacopo Buongiorno

His description on his web page above:

Jacopo Buongiorno is the TEPCO Professor of Nuclear Science and Engineering at the Massachusetts Institute of Technology (MIT), and the Director of Science and Technology of the MIT Nuclear Reactor Laboratory. He teaches a variety of undergraduate and graduate courses in thermo-fluids engineering and nuclear reactor engineering. Jacopo has published 90 journal articles in the areas of reactor safety and design, two-phase flow and heat transfer, and nanofluid technology. For his research work and his teaching at MIT he won several awards, among which the ANS Outstanding Teacher Award (2019), the MIT MacVicar Faculty Fellowship (2014), the ANS Landis Young Member Engineering Achievement Award (2011), the ASME Heat Transfer Best Paper Award (2008), and the ANS Mark Mills Award (2001) Jacopo is the Director of the Center for Advanced Nuclear Energy Systems (CANES). In 2016–2018 he led the MIT study on the Future of Nuclear Energy in a Carbon-Constrained World. Jacopo is a consultant for the nuclear industry in the area of reactor thermal-hydraulics, and a member of the Accrediting Board of the National Academy of Nuclear Training. He is also a member of the Secretary of Energy Advisory Board (SEAB) Space Working Group, a Fellow of the American Nuclear Society (including service on its Special Committee on Fukushima in 2011–2012), a member of the American Society of Mechanical Engineers, past member of the Naval Studies Board (2017–2019), and a participant in the Defense Science Study Group (2014–2015).


I highlighted with bold two points of interest, one being an area in which I hope my son will develop, two phase flows, and of course, heat transfer, since I am very fond of heat networks to obtain high energy efficiency, a key to addressing, safely, world poverty.

The second is reference to TEPCO, the Japanese power company that built and operated the the now infamous Fukushima reactors. TEPCO is a much maligned company because the reactors failed to withstand a 9.0 earthquake because the back up diesel generators failed.

I used to write quite a bit over at Daily Kos, which is a website devoted to our end of the political spectrum, although as far as energy and the environment is concerned, is overtly antinuclear, embracing the popular, but absurd idea that if nuclear energy is "too dangerous," it follows that climate change is not "too dangerous." Antinuclear rhetoric is, in my long held opinion, our equivalent of the right's creationism, and, even more graphically and explicitly, the right's recent anti-vax, and anti-mask rhetoric. Taking a vaccine can and does involve risks, however the risks are vanishingly small when compared to the risk of dying or being permanently disabled because one has not taken, or worse, refused a vaccine.

The reactionary "renewable energy will save us" fantasy - reactionary because the world abandoned an existing total reliance on "renewable energy" in the 19th century for a reason - has played out. It did not save us, it is not saving us, and it won't save us. Nuclear energy is not risk free, nor does it need to be, to be preferred to all other options when it comes to saving lives that might otherwise be lost to producing energy, any more than vaccines need to be risk free to save lives.

For a time, I was tolerated at Daily Kos, possibly because the polls I wrote, which often involved references to King Kong and lutefisk, were amusing, but ultimately I was banned, as I like to say, "for telling the truth."

I was writing there at Daily Kos when the Fukushima "accident" - it was no accident, it was an unprecedented natural disaster involving the flow of seawater - took place, and in a post I wrote there (they're called "diaries" over there) I offered my impression of the TEPCO engineers addressing the disaster. I did so in response to a correspondent there named George, who, if I have this right and memory serves me well, actually held a Ph.D in geology, but abandoned the field to take up surfing in Hawaii.

This is no surprise to me. I've known quite a number, probably numbering in the hundreds, of holders of Ph.D degrees who are quite useless. Hopefully my son, should he get a Ph.D. will reflect well on that degree and will do something more important than surfing.

By the way, I was nowhere near as well educated about energy and the environment in 2011 as I am now, and actually included a few statements that were wrong. For instance I wrote in 2011 the following:

The World Health Organization reports that 2 million people die prematurely each year from air pollution, which is about one person every 15 seconds, with almost all of this pollution resulting from dangerous fossil fuel and "renewable" biomass burning.


While this may be what the World Health Organization was saying at the time - which makes my statement directly true but indirectly false - the understanding of air pollution mortality has advanced considerably. The current understanding of the mortality associated with air pollution is, according to the most recent Lancet Survey of global mortality and risks, is around 7 million per year (6.8 million being the most probable amount) meaning one death every 5 seconds, not 15 seconds, from air pollution.

I've made an enormous effort to further educate myself in the last ten years, picking up my pace.

"George" the Surfer wrote a post saying the nuclear engineers at TEPCO, were incompetent, because they built nuclear plants near a fault line. In my post, indirectly addressed to George the Surfer, I asked if this meant that people who built cities near fault lines were incompetent.

I began this line of reasoning thusly:

If a single structure is rebuilt in the path of the 2011 tsunami, even one structure of any kind, say a solar PV plant containing oodles of chemicals known to be toxic (in some cases highly toxic), will the builder of said structure be declared "incompetent?"

In 1923, the city of Tokyo was struck by an earthquake which killed roughly between 100,000 and 150,000 people in a matter of about 10 minutes. Almost all of these people were killed as a result of falling buildings - no nuclear power plants were involved since, um, the world class scientists who first built nuclear plants, men like Nobel Laureates Wigner, Seaborg, Fermi, Bethe, etc, were very early in their careers and were, in some cases, um, children. Incredibly, the 1923 Tokyo earthquake produced no internet fetishes about banning, um, buildings. In fact, Tokyo was rebuilt, only to be completely destroyed by dangerous fossil fuels diverted to weapons purposes some 22 years later.

Even more incredibly, the city was rebuilt again and even more incredibly, there were no calls among the Japanese (or anyone else) for phasing out dangerous fossil fuels because they not only could be used to destroy entire cities, but are used to destroy entire cities as the observed destruction of scores of cities in the last 70 years or so has repeatedly demonstrated.

Yet because two cities were destroyed in a period of less than a week more than 5 decades ago by nuclear weapons, everyone wants to talk about the possibility of nuclear war to the exclusion of the day-to-day reality of dangerous fossil fuel war, even though nuclear wars are no longer observed and dangerous fossil fuel wars powered by dangerous fossil fuel weapons are almost continuously observed.

Huh?

Wasn't it just a few years back that one of cities in one of the oldest civilizations on earth was mostly destroyed - including artifacts almost 5,000 years old - in a dangerous fossil fuel war using dangerous fossil fuel weapons to effect such destruction?


By the way, the overwhelming number of deaths in the Earthquake/Tsunami at Tohoku involved buildings and seawater.

Consider this publication, published about a year after the Tohoku Earthquake which is often described by anti-nukes, who I personally, again, regard as the precise equivalents of anti-vax types, refer to as "Fukushima" as if the reactors, and only the reactors were worthy of consideration in the event:

Nobuhito Mori, Tomoyuki Takahashi & THE 2011 TOHOKU EARTHQUAKE TSUNAMI JOINT SURVEY GROUP (2012) Nationwide Post Event Survey and Analysis of the 2011 Tohoku Earthquake Tsunami, Coastal Engineering Journal, 54:1, 1250001-1-1250001-27

It contains the following text:

The Tohoku region comprises several prefectures ranging from north to south: Aomori Prefecture, lwate Prefecture, Miyagi Prefecture, and Fukushima Prefecture, which border the Pacific Ocean. Sendai is the largest city in the region. The southern part of Tohoku is relatively fiat, especially the Sendai Plain, but the coastal geomorphology of northern Tohoku features ria coasts, which are steep, narrow bays. The northeastern part of Tohoku is known as the Sanriku region. The tsunami inundated over 400 km2 of land. As of January 13 in 2012, official fatalities were 15,844 with an additional 3,394 missing. The major cause of death was the tsunami, and most fatalities occurred in Tohoku: 58% in Miyagi Prefecture, 33% in Iwate Prefecture and 9% in Fukushima Prefecture, respectively. The number of totally and partially damaged houses, buildings, and bridges were 128,530, 230,332, and 78, respectively.

Before this event, the risk of an earthquake and tsunami off the Tohoku coast was believed to be high. The Japanese government reported that a magnitude 7.4 earthquake along a 200 km fault offshore of Sendai was expected to occur with 99% probability within 30 years. The 1896 Meiji Sanriku earthquake (Mw 8.2-8.5) and tsunami caused 21,915 deaths, the 1933 Showa Sanriku earthquake (Mw 8.1) and tsunami caused 3,064 deaths, and smaller tsunamis have occurred roughly every 1{}--50 years. Thus, earthquake and tsunami disaster countermeasures, such as offshore and onshore tsunami barriers, planted trees as a natural tsunami barrier, vertical evacuation buildings, and periodic evacuation training were implemented and practiced in these areas. Therefore, we emphasize that Tohoku was an area highly prepared for a tsunami. Nevertheless, the tsunami disaster countermeasures were insufficient against the 2011 event. Tsunami barriers were severely damaged, some reinforced concrete buildings were totally destroyed, and the extent of inundation was underestimated in several areas.


There is, of course, very little consideration ten years later of the 19,278 (if the missing remained missing) deaths from seawater, presumably including deaths in the 128,530 totally or partially damaged houses. They don't matter in the minds of anti-nukes; anti-nukes would much rather discuss the possibility that someone, perhaps multiple people might die from (gasp) radiation. The text suggests that only 9% of the deaths recorded took place in the Fukushima Prefecture, and that they were from seawater. If this 9%, which works out to 1735 human beings had all died from radiation instead of seawater - they didn't - this would amount, in units of time, the number of people who will be killed by air pollution in the next two hours and 20 minutes roughly.

In my Daily Kos Diary, I wrote in defense of the outstanding job done by TEPCO engineers under these extraordinary places.

To wit:

...The Fukushima nuclear plants were designed and built beginning in the 1960's and came on line in the 1970's, and operated for decades largely without incident. Dumb people like to lay around day after day after day pretending that wind and solar toys and junk were a realistic alternative to these plants, but when doing this, they're completely full of shit, and were especially full of shit in the 1960's and 1970's, not that they're much less full of shit now.

Suppose the supposedly "incompetant" engineers had built coal plants instead of nuclear plants instead?

The result would have been many tens of thousands of premature deaths, although there would be no fetishists burning lots and lots and lots of electricity to caterwaul about this point...


The figures for the number of lives saved by nuclear energy in Japan are, I think, higher than what I wrote in 2011 when I wrote, "tens of thousands."

I continued a consideration of the TEPCO engineers the surfer called "incompetent."

Now we have people running around saying that the response of the TEPCO engineers and workers after the tsunami struck was incompetent.

Really?

Compared to what?

Contained within the confines of the Fukushima plant were operating reactors. Also there were reactors in which all of the used fuel, maybe decades worth of such fuel, although Japan correctly has reprocessed at least some of its fuel. TEPCO engineers addressed a situation in which much - if not most, if not all - of its equipment was destroyed. As was the case with everything else in the country, they had to manage a situation in the presence of a completely destroyed infrastructure. Moreover some of the reactors were built using technology developed nearly half a century ago.

As was the case with every single other bit of infrastructure in the path of the earthquake and tsunami, the events exceeded the design parameters.

Now, the TEPCO engineers did not succeed in making the impact of the extreme damage to their plant zero. Neither in fact did any other industry. Refineries exploded, after all, bridges collapsed or were swept away, semi-conductor plants were destroyed. It is very unlikely that any industry in the highly industrialized nation of Japan was able to prevent injury or the risk of injury to the public from their plants to be zero in an earthquake and tsunami.

Nevertheless the TEPCO engineers were able, within a matter of weeks, to address a situation never before encountered anywhere, easily exceeding any rational design parameters, assess the situation and stabilize it so that the ultimate loss to either the environment, or to human life measures as not even a blip compared to a single day's normal operations of dangerous fossil fuel facilities around the world.

In the last four months, these engineers have built one of the world's largest ion exchange systems, built robots to investigate facilities remotely, moved huge pumps and equipment through a ravaged landscape - destroyed by a, um, natural disaster, dealt with a stupid and hostile media consisting largely of people who have never opened a science book in their pathetic lives. They stabilized the so called "waste" products that represented billions of person years out energy output. The plant has a capacity for water treatment and cesium removal of 1200 m3 (317,000 gallons) per day. The recovered water is reused for cooling the damaged cores. The total volume of water available for such reuse is around 110,000 cubic meters. Thus the engineers at TEPCO, working under difficult circumstances were able to construct a closed system that effectively will extract and concentrate the extracted leachates into easily managed small containers. (If so desired, the properties of these resins allow the collection of pure radiocesium.)

Now, as it happens, I have been around lots of projects involve industrial scale use of functionalized resins - not nuclear applications unhappily - that are similar to the ion exchange resins used at Fukushima - and rapidly scaling them, as been done there, is hardly simple, although it must be said that these resins are now commercially available on relatively large scales. For instance, one can buy 250 gallon drums of a product called "SuperLig® 644" which is a proprietary resin that has high selectivity for the absorption of cesium from aqueous solutions in the presence of potassium and sodium, a situation that is observed in waste tanks at the Hanford nuclear weapons processing facility near Richland Washington.

(cf. Adu-Wusu et al, Journal of Radioanalytical and Nuclear Chemistry, Vol. 267, No.2 (2006) 381–388)

In actuality TEPCO is using two technologies, the American technology, as well as a technology utilized by France at its reprocessing plants for decontaminating cesium from water.

Even though these types of products are commercially available, it is no small feat to build a plant to utilize them on a large scale, to build connections, pumps, columns, filters, supports, etc on such a scale as to be able to process thousands of cubic meters of water, especially in an area that is largely inaccessible.

Yet the TEPCO engineers have done precisely this and the ion exchange plant is operating. Moreover they did in in four months in a destroyed area, parts of which were radioactive.

I note that American engineers at Hanford are still only operating pilot plants doing this sort of thing, although they have had decades to address this problem in an area with intact infrastructure. (In fairness to the Americans, their research in this area is largely responsible for the commercial availability of such resins.)

Similarly, TEPCO engineers were able to quickly coat the ground surrounding the failed plants with a polymer that prevents the volatilization of dust. This also was a remarkable accomplishment, although probably less remarkable than the building of the ion exchange plant.

Finally, several engineers and workers risked their lives by entering the plant at various times, nine of them receiving very high doses of radiation. Of course, except for the fact that nuclear is spelled with an "N" and building is spelled with a "B" these people are not qualitatively different than the many thousands of Japanese who risked their lives to enter collapsed buildings, even if the duimbells at the New York Times have yet to announce the events associated with the Sendai earthquake as the "death of the construction industry."

While accomplishing these difficult unprecedented acts - some, as the numbers above suggest involved great personal danger - these TEPCO engineers had to endure the oppressive catcalls, insults, vituperation, suspicion, and fear of a largely illiterate and unhelpful international community, some of whom seemed to take a kind of twisted schadenfreud motivated not by concern for humanity, but rather to engage in a resounding chorus that was a paen to fear, ignorance, and superstition...


It seems that my son has a reasonable shot at getting into MIT's Nuclear Engineering Department. From my review of the faculty and research staff, I would consider doing so would be something like dying and going to Heaven, if in fact there were such a thing as Heaven. No one should consider acceptance to that august institution a "slam-dunk" but it's reasonable to assume he might be admitted on strong credentials. If he did, would I advise him to take a serious look at working with Dr. Buongiorno's group, run by the TEPCO Professor of Nuclear Science and Engineering?

Damn straight I would, although again, the department is filled with outstanding engineer/scientists working to save the world from itself.

I think the TEPCO guys did a very good job containing and limiting the damage, despite the contempt, fear and ignorance with which they were addressed.

The DailyKos post I wrote in 2011 is here: Were the Japanese Engineers Who Built Fukushima Incompetent?

It's interesting to see that this document contains a paraphrase of the true statement, the repetition of which ultimately got me banned at Daily Kos later on, where nuclear energy is "too dangerous" and climate change isn't:

The decision to close nuclear plants around the world - mostly in bourgeois countries - is, and there's no polite way to put this, is murder, since people will be killed by the use of replacement dangerous fossil fuel plants and irrevocable and irreversible damage will be done to the planetary ecosystem.


I stand by that statement.

I trust you're having a nice afternoon.
2 replies = new reply since forum marked as read
Highlight: NoneDon't highlight anything 5 newestHighlight 5 most recent replies
MIT's TEPCO Professor of Nuclear Science and Engineering (Original Post) NNadir Sep 2021 OP
Change in nearby science and politics Tetrachloride Sep 2021 #1
Koo koo jpak Sep 2021 #2

Tetrachloride

(7,829 posts)
1. Change in nearby science and politics
Sun Sep 19, 2021, 02:53 PM
Sep 2021

These areas of science + engineering have seen changes which could benefit a new nuclear power plant:

1. geothermal
2. materials science
3. large scale battery
to name 3.

Some regions such as Japan could be a worthwhile place to reduce greenhouse gasses.

That’s my 2 cents.

Latest Discussions»Culture Forums»Science»MIT's TEPCO Professor of ...