Democratic Underground Latest Greatest Lobby Journals Search Options Help Login
Google

MIT Builds Efficient Nanowire Storage to Replace Car Batteries

Printer-friendly format Printer-friendly format
Printer-friendly format Email this thread to a friend
Printer-friendly format Bookmark this thread
This topic is archived.
Home » Discuss » Topic Forums » Environment/Energy Donate to DU
 
OKIsItJustMe Donating Member (1000+ posts) Send PM | Profile | Ignore Tue Mar-04-08 10:15 AM
Original message
MIT Builds Efficient Nanowire Storage to Replace Car Batteries
http://www.popularmechanics.com/science/research/4252623.html

MIT Builds Efficient Nanowire Storage to Replace Car Batteries

Could the ultracapacitor replace lithium ion in hybrids and plug-in vehicles? Our senior automotive editor already thinks the science adds up, but it’s in a tiny box at a messy lab that the future of automotive efficiency is taking a surprising turn toward extending range and battery life.

By Erik Sofge
Published on: February 29, 2008

...

The problem with capacitors—and the reason they’ve taken such a back seat to batteries since they were first stumbled upon in the ’60s—is capacity. Even ultracapacitors can manage only a fraction of the power of a lead-acid or lithium-ion battery. So the recipe for a better ultracapacitor is more surface area. Researchers have already expanded capacity with the addition of activated carbon coatings, which are porous enough to provide an effective surface area that’s 10,000 times greater than the materials previously used to gather ions. Around four years ago, Schindall was reading about various experiments that utilized nanowire arrays, when he experienced—though no scientist, Schindall included, would ever actually put it this way—the proverbial “eureka” moment.

By replacing the porous activated carbon used in ultracapacitors with tightly bunched nanotubes, Schindall believed that the ion-collecting surface area could be increased by as much as five. Since current ultracapacitors can store around 5 percent of the energy in an equivalent-size battery, the addition of nanowires could bring this up to 25 percent. “And you can also operate at a higher voltage with the nanotubes, and that’s about another factor of two in energy,” he says. “We are hopeful—we haven’t proven it—that we can get up somewhere between 25 and 50 percent of a battery’s energy. At that point, it becomes a compelling device for many applications.”

...

The process of creating the nanowire arrays is relatively straightforward—a tiny piece of conductive substrate is coated with a catalyst, and then placed in a vacuum chamber. The chamber is then filled with carbon gas, and the square is heated until a black, sootlike coating appears. After about 10 minutes, the tile is complete, and the nanowires are fully grown. The challenge has been in reaching the theoretical capacity that Schindall’s team originally calculated. So far, the nanotubes can match the energy storage of standard ultracapacitors, but the goal remains to boost that capacity by a factor of five or even 10. “A couple of years ago, we thought we were six months to a year away. And that time has come and gone,” he says.

The next step for this project is to create test cells about the size of watch batteries to be distributed to existing ultracapacitor manufacturers. The team will also release its latest results, but by allowing companies to independently verify that data, Schindall believes it could demonstrate the commercial viability of the nanotube approach. He hopes to have those test cells ready within a year, or possibly as soon as a few months. Still, it could take years for ultracapacitors of any kind to reach the kind of production volume and capacity necessary to rival batteries in the marketplace. So for now, these nano-dusted squares are going back in their tray and back on the shelf to fight for energy storage supremacy another day.
Printer Friendly | Permalink |  | Top
kestrel91316 Donating Member (1000+ posts) Send PM | Profile | Ignore Tue Mar-04-08 11:06 AM
Response to Original message
1. I remember the old days when "nanotechnology" was known as "chemistry".
And chemical engineers were not "nanotechnologists".
Printer Friendly | Permalink |  | Top
 
phantom power Donating Member (1000+ posts) Send PM | Profile | Ignore Tue Mar-04-08 11:35 AM
Response to Reply #1
2. Maybe we should call it "chemistry 2.0" ...
Or 3.0?






Printer Friendly | Permalink |  | Top
 
OKIsItJustMe Donating Member (1000+ posts) Send PM | Profile | Ignore Tue Mar-04-08 11:48 AM
Response to Reply #1
3. There is a difference
http://en.wikipedia.org/wiki/Nanotechnology

Nanotechnology

From Wikipedia, the free encyclopedia

Nanotechnology refers broadly to a field of applied science and technology whose unifying theme is the control of matter on the atomic and molecular scale, normally 1 to 100 nanometers, and the fabrication of devices with critical dimensions that lie within that size range.

It is a highly multidisciplinary field, drawing from fields such as applied physics, materials science, interface and colloid science, device physics, supramolecular chemistry (which refers to the area of chemistry that focuses on the noncovalent bonding interactions of molecules), self-replicating machines and robotics, chemical engineering, mechanical engineering, biological engineering, and electrical engineering. Much speculation exists as to what may result from these lines of research. Nanotechnology can be seen as an extension of existing sciences into the nanoscale, or as a recasting of existing sciences using a newer, more modern term.

Two main approaches are used in nanotechnology. In the "bottom-up" approach, materials and devices are built from molecular components which assemble themselves chemically by principles of molecular recognition. In the "top-down" approach, nano-objects are constructed from larger entities without atomic-level control. The impetus for nanotechnology comes from a renewed interest in Interface and Colloid Science, coupled with a new generation of analytical tools such as the atomic force microscope (AFM), and the scanning tunneling microscope (STM). Combined with refined processes such as electron beam lithography and molecular beam epitaxy, these instruments allow the deliberate manipulation of nanostructures, and led to the observation of novel phenomena.

Examples of nanotechnology in modern use are the manufacture of polymers based on molecular structure, and the design of computer chip layouts based on surface science. Despite the great promise of numerous nanotechnologies such as quantum dots and nanotubes, real commercial applications have mainly used the advantages of colloidal nanoparticles in bulk form, such as suntan lotion, cosmetics, protective coatings, drug delivery<1>, and stain resistant clothing.

...
This (of course) is an example of the "bottom-up" approach.

I understand your frustration. It was the "top-down" nanotechnology that we got to read about in science fiction. Almost infinitely small machines being used to build other infinitely small machines. Somehow, this just doesn't seem as dramatic.

I felt the same way when "Artificial Intelligence" got dumbed down to the point where "Expert Systems" were described as AI. (This is not the AI I had in mind thank-you.)
Printer Friendly | Permalink |  | Top
 
eppur_se_muova Donating Member (1000+ posts) Send PM | Profile | Ignore Tue Mar-04-08 11:37 PM
Response to Reply #1
4. You need the 'nano' prefix to get grant money.
It gets pretty shameless at times.
Printer Friendly | Permalink |  | Top
 
Javaman Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Mar-05-08 12:45 PM
Response to Reply #4
5. I have this idea for a nano skyscraper...nt
Printer Friendly | Permalink |  | Top
 
DU AdBot (1000+ posts) Click to send private message to this author Click to view 
this author's profile Click to add 
this author to your buddy list Click to add 
this author to your Ignore list Mon May 06th 2024, 03:11 PM
Response to Original message
Advertisements [?]
 Top

Home » Discuss » Topic Forums » Environment/Energy Donate to DU

Powered by DCForum+ Version 1.1 Copyright 1997-2002 DCScripts.com
Software has been extensively modified by the DU administrators


Important Notices: By participating on this discussion board, visitors agree to abide by the rules outlined on our Rules page. Messages posted on the Democratic Underground Discussion Forums are the opinions of the individuals who post them, and do not necessarily represent the opinions of Democratic Underground, LLC.

Home  |  Discussion Forums  |  Journals |  Store  |  Donate

About DU  |  Contact Us  |  Privacy Policy

Got a message for Democratic Underground? Click here to send us a message.

© 2001 - 2011 Democratic Underground, LLC